欢迎来到本博客❤️❤️
博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
⛳️赠与读者
努力,很多时候借力比努力更关键,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。就是做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,然而不能只
或许,雨过云收,神驰的天地更清朗.......
1 概述
摘 要
说,当中国经济维持上升趋势时,能源需求量也会相应增加,若不对单位GDP相应能源的碳排放量进行有效约束,碳中和目标就很难达成。就是要建立碳中和,就需要找到清洁能源代替非清洁能源这一切实可行的方法;另一方面,能源需求和经济发展之间具有同步增长规律。也就
个棘手问题。就是风能是可再生清洁能源,因总资源蕴藏量巨大,可再生,无污染,日益引起世界各国关注。伴随着风电在电源结构中所占比重的日益提高,风电自身存在的随机性,波动性和不稳定性等疑问对于电力系统的安全和稳定运行产生了日益显着的影响。大规模风电消纳问题始终
储能技术对于解决风电消纳比例较高,提高系统可靠性具有关键意义。充分利用风能资源可以实现绿色发展和节能降耗,但风力发电特点不同于常规发电,风电具有间歇性和波动性,大范围风能并网对电网造成影响。为了解除高渗透分布式风电并网给配电网带来的安全性和可靠性等问题,储能技术成为保证风电消纳和提高系统经济效益的实用手段。研究电力系统储能系统的功能定位和配置原则,有着十分重要的意义。
关键词:风电消纳;储能容量部署;成本最优
目标函数和约束条件
目标函数为环境发电总成本最小,发电总成本=火电成本+风电成本+储能成本+弃风损失+失负荷损失;
火电成本=运行维护成本+发电煤耗成本+碳捕集成本,
当利用传统的火电机组煤耗量计算公式对该最优化调度问题进行建模时,将会得到一个二次规划问题,这是由于火电机组的煤耗量是关于机组出力的一元二次函数,使得该问题的目标函数中含有非线性的部分,而当模型中火电机组的个数或调度周期增加时,求解该最优化问题的时间成本和难度将大大上升。基于此,为了降低模型求解难度,加快最优化求解计算速度,本文使用分段线性化方法将火电机组的二次煤耗量计算公式转为一次函数,进而使整个最优化模型转化为线性规划模型。火电机组的煤耗量函数图像如下,其中实线表示分段线性化处理后的火电机组煤耗量函数,虚线表示分段线性化处理之前的火电机组煤耗量函数。
图1 火电机组煤耗量函数曲线对比
完整文章讲解见:
【火电机组、风能、储能】高比例风电电力系统储能运行及调整分析(Matlab代码实现)-CSDN博客
2 运行结果
3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
4 Matlab代码、内容、文档下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取