当前位置: 首页 > news >正文

幼等数论

整除

T1-1. Propose that \(m > n \geqslant 0\), Prove that \( (2{2n} + 1) \mid (2{2m} - 1) \) .

Since we have:\[x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \cdots + xy^{n-2} + y^{n-1})\]
Therefore, we can rewrite:\[
2{2m} - 1 = (2{2{n+1}}){2{m-n-1}} - 1{2{m-n-1}} = (2{2{n+1}} - 1)(2{2(2^{m-n-1}) - 1} + \cdots + 1)\]
Thus, we have \( 2{2{n+1}} - 1 \mid 2{2m} - 1\). Since \(2{2{n+1}} - 1 = (2{2n})^2 - 1 = (2{2n} - 1)(2{2n} + 1)\), Therefore \( (2{2n} + 1) \mid (2{2m} - 1) \).

T1-2. Suppose \(k \geqslant 1 \) is an odd integer, Prove that \(1^k + 2^k +3^k +\cdots +n^k\) can not be divisible by \(n+2\).

When \(n=1\) it must be true. When \(n \geqslant 2\), we can rewrite the summation(A) as follows:\[2A = 2 + (2^k + n^k) + (3^k + (n -1)^k) + \cdots + (n/2)^k + (n/2 + 1)^k\]
Since k is odd integer, for each \(i \geqslant 2\), we have:\[i^k + (n - i + 2)^k = (n + 2)(i^{k-1} + i^{k-2}(n-i+2) + \cdots + (n - i +2)^{k-1})\]Therefore, 2A divided by \( n + 2\) leaces a reminder of 2. Thus, \(A\) can not be divisible by \(n + 2\).

T1-3. Suppose a,m,n are all integers, \(a \geqslant 2\), show that:\(a^m - 1 \mid a^n - 1\) is a sufficient requarement of \(m\mid n.\)

If \(m \mid n\), then \(n=km\), \[ a^n - 1 = a^{km} - 1^k = (a^m - 1)(a^{(k-1)m} + a^{(k-2)m} + \cdots + a^m + 1)\]
Therfore \(a^m - 1 \mid a^n - 1\).
If \(a^m - 1 \mid a^n - 1\), then we can write:\[ n =km + r, 0\leqslant r < m\]
Then we have:\[a^n - 1 = a^{mk + r} - 1 = a^r (a^{mk} - 1) + (a^r - 1) \]
Since \(a^m - 1 \mid a^n - 1\), we have \(a^m - 1 \mid a^r - 1\), while \(0\leqslant r < m\) , thus \(r = 0\). therfore \(m\mid n\).

T1-4. \(n > 0\), Show that: there is an integer a, which can make \(a^a +1, a{aa} + 1,\cdots\) can all be divisible by n.

Suppose \(a = 2k + 1\), then \(a^a = (2k + 1)^{(2k+ 1)}\). Since the multiplication of the odd number is odd, thus \(a^a, a{aa},\cdots\) are all odd.
Since \[a^a + 1,a{a{a}} + 1,c\dots\] are all have the factor of \((a+1)\), thus we can let \(a+1 = 2n, a=2n-1\).

T1-5.\(n\geqslant 2\),Show that there are n mutually different positive integer number, with the multiplication of these n number divisible the summary of arbitary two number.
First we chose n different number \(n_1, n_2, c=\cdots, n_n\), and then let every item multiplies a factor K. Then we want each two item \(Kn_i + Kn_j\) to be divisible by \(K^n\Pi n_i\). Then we can take K = \(\Pi (n_i+n_j)\).

T1-6 Suppose \(2^{k_1} + 2^{k_2} + \cdots + 2^{k_n} \) is divisible by \(2^m -1\), show that \(n \geqslant m\).
Suppose \(n < m\)
We consider the worst condition with n different \(k_i\) since the same \(k_i\) will make us get \(2^{k_i+1}\),which makes \(n\) smaller. And this condition will let us get the smallest \(n\).

Then we can rewrite the power as follows:\[2^{k_i} = 2^{mq_i+r_i},0\leqslant r_i < m\]
Since \(2^m \equiv 1 \mod (2^m - 1)\), we have:\[2^{mq_i+r_i} \equiv 2^{r_i} \mod (2^m - 1)\]\[2^{k_1} + 2^{k_2} + \cdots + 2^{k_n} \equiv 2^{r_1} + 2^{r_2} + \cdots + 2^{r_n} \mod (2^m - 1)\]
Since \[2^{r_1} + 2^{r_2} + \cdots + 2^{r_n} \leqslant 2^1 + \cdots + 2^{m-1} = 2^m - 2 < 2^M -1\]

GCD and LCM

http://www.wxhsa.cn/company.asp?id=3644

相关文章:

  • 搭建rocketmq的三主三从遇到的坑
  • 深入解析:轻松Linux-9.进程间通信
  • 2025.9.14——1黄1绿
  • Ubuntu 中改图片大小
  • Day01
  • 认识眼图和眼图的参数
  • 【芯片设计-信号完整性 SI 学习 1.2 -- loopback 回环测试】 - 实践
  • 【科研绘图系列】R语言绘制地图和散点图 - 指南
  • Java NIO 学习小记
  • 扩展欧几里得算法求乘法逆元
  • redis实现缓存3-封装redis工具类
  • 高阻态
  • 鸿蒙应用开发从入门到实战(四):ArkTS 语言概述
  • 命令模式的深度解析:从标准实现到TPL Dataflow高性能架构
  • JavaWeb
  • 读书笔记:为什么数据在磁盘上的存放顺序如此重要?
  • Rcc_APBPeriphClockCmd()
  • 故障处理:ORA-19809: limit exceeded for recovery files
  • ORA-01555系列:二、ORA-01555的场景分析与解决方案
  • PySimpleGUI常用控件
  • 25.09.14 与其感慨路难行,不如马上出发
  • GCC工具链应用学习笔记
  • 初始化 MCP 环境 创建 MCP Server (一)
  • 博客园格式设置
  • [总结/备赛]备战 CSP-S 2025 初赛总结
  • win11 系统如何进行硬盘分区?固态硬盘怎么分区?SSD 固态硬盘是分区好还是不分区好?
  • 逆序数及其应用
  • 豆豆守护如何下载?
  • Java运行时jar时终端输出的中文日志是乱码
  • ZK2真空发生器日常清理