本文分享自天翼云开发者社区《Flink 与Flink可视化平台StreamPark教程(CDC功能)》,作者:l****n
flinkCDC功能是面向binlog进行同步、对数据的增删改进行同步的工具,能够实现对数据的动态监听。目前其实现原理主要为监听数据源的binlog对数据的变化有所感知。
<!-- flink connector cdc -->
<dependency>
<groupId>com.ververica</groupId>
<artifactId>flink-connector-mysql-cdc</artifactId>
<version>${flink.sql.connector.cdc.version}</version>
</dependency>
Flink® CDC Version | Flink® Version |
---|---|
1.0.0 | 1.11.* |
1.1.0 | 1.11.* |
1.2.0 | 1.12.* |
1.3.0 | 1.12.* |
1.4.0 | 1.13.* |
2.0.* | 1.13.* |
2.1.* | 1.13.* |
2.2.* | 1.13., 1.14. |
2.3.* | 1.13., 1.14., 1.15.*, 1.16.0 |
package cn.ctyun.demo.api.watermark;import cn.ctyun.demo.api.utils.TransformUtil;
import com.alibaba.fastjson.JSONObject;
import com.ververica.cdc.connectors.mysql.source.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import java.time.Duration;public class ViewContentStreamWithoutWaterMark {public static DataStream<JSONObject> getViewContentDataStream(StreamExecutionEnvironment env){// 1.创建Flink-MySQL-CDC的SourceMySqlSource<String> viewContentSouce = MySqlSource.<String>builder().hostname("49.7.189.190").port(3307).username("root").password("Adm@163.comCdc").databaseList("test_cdc_source").tableList("test_cdc_source.view_content").startupOptions(StartupOptions.initial()).deserializer(new JsonDebeziumDeserializationSchema()).serverTimeZone("Asia/Shanghai").build();// 2.使用CDC Source从MySQL读取数据DataStreamSource<String> mysqlDataStreamSource = env.fromSource(viewContentSouce,WatermarkStrategy.noWatermarks(),"ViewContentStreamNoWatermark Source");// 3.转换为指定格式return mysqlDataStreamSource.map(TransformUtil::formatResult);}
}
flinksql操作,能够简化大量操作,具体如下代码所示。在这里我们只需要提供简单的sql语句即可完成对mysql数据源的动态读取。通过指定连接器类型为'connector' = 'mysql-cdc'
package cn.ctyun.demo.flinksql;import cn.ctyun.demo.flinksql.udf.HashScalarFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;/*** @classname: ReadFromCdc* @description: 通过cdc获取数据变化进行输入* @author: Liu Xinyuan* @create: 2023-04-12 15:09**/
public class FlinkSqlReadFromCdc {public static void main(String[] args) throws Exception {ParameterTool parameterTool = ParameterTool.fromArgs(args);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.disableOperatorChaining();StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);// 1. 创建读取表,使用mysql-cdc进行,注意此时应标记主键String source_ddl = "CREATE TABLE UserSource (" +" id INT, " +" name VARCHAR, " +" phone VARCHAR, " +" sex INT, " +" primary key (id) not enforced" +") WITH (" +" 'connector' = 'mysql-cdc'," +" 'hostname' = '*******'," +" 'port' = '3307'," +" 'username' = '" + parameterTool.get("user") + "', " +" 'password' = '" + parameterTool.get("passwd") + "'" +" 'database-name' = 'test_cdc_source'," +" 'table-name' = 'test_user_table'," +" 'debezium.log.mining.continuous.mine'='true',"+" 'debezium.log.mining.strategy'='online_catalog', " +" 'debezium.database.tablename.case.insensitive'='false',"+" 'jdbc.properties.useSSL' = 'false' ," +" 'scan.startup.mode' = 'initial')";tableEnv.executeSql(source_ddl);// 2. 创建写出表,使用mysql进行String sink_ddl = "CREATE TABLE UserSink (" +" id INT, " +" name VARCHAR, " +" phone VARCHAR, " +" sex INT, " +" primary key (id) not enforced" +") WITH (" +" 'connector.type' = 'jdbc', " +" 'connector.url' = 'jdbc:mysql://******:3306/flink_test_sink?useSSL=false', " +" 'connector.table' = 'test_user_table', " +" 'connector.username' = '" + parameterTool.get("sinkUser") + "', " +" 'connector.password' = '" + parameterTool.get("sinkPasswd") + "'" +" 'connector.write.flush.max-rows' = '1'" +")";tableEnv.executeSql(sink_ddl);// 3.简单的数据清洗,将电话号码进行hash掩码tableEnv.createTemporarySystemFunction("MyHASH"