AVX-512支持:SIMD的终极形态
// 优化的数值计算
// 优化前的代码
public double[] ProcessData(double[] input) {var result = new double[input.Length];for (int i = 0; i < input.Length; i++){result[i] = Math.Sin(input[i]) * Math.Cos(input[i]);}return result; }// 优化后的代码:使用硬件内在函数 public unsafe double[] ProcessDataOptimized(double[] input) {var result = new double[input.Length];fixed (double* pInput = input, pResult = result){int i = 0;if (Avx512F.IsSupported){var size = Vector512<double>.Count;for (; i <= input.Length - size; i += size){var vec = Avx512F.LoadVector512(pInput + i);var sinVec = Avx512F.Sin(vec);var cosVec = Avx512F.Cos(vec);var product = Avx512F.Multiply(sinVec, cosVec);Avx512F.Store(pResult + i, product);}}// 处理剩余元素for (; i < input.Length; i++){pResult[i] = Math.Sin(pInput[i]) * Math.Cos(pInput[i]);}}return result; }//使用AVX-512进行高性能矩阵运算 using System.Runtime.Intrinsics; using System.Runtime.Intrinsics.X86;public unsafe void MatrixMultiply(float* left, float* right, float* result, int size) {for (int i = 0; i < size; i++){for (int j = 0; j < size; j += 16) // 一次处理16个单精度浮点数 {// 加载16个float到AVX-512寄存器var vecLeft = Avx512F.LoadVector512(left + i * size + j);var vecRight = Avx512F.LoadVector512(right + j * size);// 执行向量乘法var product = Avx512F.Multiply(vecLeft, vecRight);// 存储结果Avx512F.Store(result + i * size + j, product);}} }
public void OptimizedMethod() {if (Avx512F.IsSupported){// 使用AVX-512优化 ProcessWithAvx512();}else if (Avx2.IsSupported){// 使用AVX2优化 ProcessWithAvx2();}else if (Sse42.IsSupported){// 使用SSE4.2优化 ProcessWithSse42();}else{// 回退到标量实现 ProcessScalar();} }