速度为 \(v_0\) 的小球 \(A\) 撞到了静止的小球 \(B\),小球 \(A\)、\(B\) 的质量分别为 \(m_1\)、\(m_2\),\(A\) 和 \(B\) 之间为弹性碰撞,求碰撞后 \(A\) 的速度 \(v_1\) 和 \(B\) 的速度 \(v_2\)。
\[\begin{cases}m_1v_0=m_1v_1+m_2v_2\\\dfrac12m_1{v_0}^2=\dfrac12m_1{v_1}^2+\dfrac12m_2{v_2}^2\end{cases}
\]
\[v_0=\dfrac{m_1{v_1}^2+m_2{v_2}^2}{m_1v_1+m_2v_2}=\dfrac{m_1v_1+m_2v_2}{m_1}
\]
\[{m_1}^2{v_1}^2+2m_1m_2v_1v_2+{m_2}^2{v_2}^2={m_1}^2{v_1}^2+m_1m_2{v_2}^2
\]
\[2m_1m_2v_1v_2+{m_2}^2{v_2}^2=m_1m_2{v_2}^2
\]
两边同除以 \(m_2v_2\)。
\[2m_1v_1+m_2v_2=m_1v_2
\]
当 \(m_1=m_2\) 时,\(\begin{cases}v_1=0\\v_2=v_0\end{cases}\)。
\[\therefore v_2=\dfrac{2m_1v_1}{m_1-m_2}
\]
代入 \(m_1v_0=m_1v_1+m_2v_2\) 得:
\[m_1v_0=m_1v_1+\dfrac{2m_1m_2v_1}{m_1-m_2}
\]
\[m_1(m_1-m_2)v_0=m_1(m_1-m_2)v_1+2m_1m_2v_1
\]
\[m_1(m_1+m_2)v_1=m_1(m_1-m_2)v_0
\]
\[\therefore\begin{cases}v_1=\dfrac{(m_1-m_2)v_0}{m_1+m_2}\\v_2=\dfrac{2m_1v_0}{m_1+m_2}\end{cases}
\]